Contents

Các công thức lượng giác lớp 9Các công thức lượng giác lớp 10 cơ bản9. Công thức các cung liên kết trên đường tròn lượng giácCác công thức lượng giác lớp 10 nâng caoThần chú học công thức lượng giác đơn giản dễ nhớCách giải các dạng bài tập lượng giác lớp 10 cơ bản

Trong toán học lớp 9, lớp 10 và lớp 11 có rất nhiều các công thức lượng giác khác nhau khiến bạn không thể nhớ hết được? Vậy làm sao có thể học thuộc được hết các công thức đó đơn giản mà dễ nhớ? Tất cả đã được chúng tôi trình bày chi tiết trong bài viết dưới đây.

Bạn đang xem: Công thức lượng giác lớp 11

Các công thức lượng giác lớp 9

1. Công thức lượng giác trong tam giác

*

*

2. Hệ thức lượng trong tam giác vuông

1. Định nghĩa các tỉ số lượng giác của góc nhọn

*

2. Một số tính chất của các tỉ số lượng giác

a, Cho α,β là hai góc phụ nhau. Khi đó ta có:

sin α = cos β; cos α = sin β tan α =cot β; cot α=tan β

b) Cho góc nhọn α, ta có:

*

3. Các hệ thức về cạnh và góc trong tam giác vuông

*

b = a.sin B; c = a.sin C b = a.cos C; c = a.cos B b = c.tan B; c = b.tan C b = c.cot C; c = b.cot B

Các dạng bài tập công thức lượng giác lớp 9

Bài 1: Cho biết cosα = 0,4. Hãy tìm sin⁡α, tan⁡α, cot⁡α

Lời giải:

*

*

*

*

*

Các công thức lượng giác lớp 10 cơ bản

Giới thiệu các công thức lượng giác toán 10 cơ bản nằm trong chương trình sách giáo khoa lớp 10. Đây là những công thức bắt buộc các em học sinh lớp 10 cần phải học thuộc lòng thì mới có thể làm được những bài tập lượng giác cơ bản nhất.

*

1. Công thức hàm lượng giác cơ bản

*

Cách ghi nhớ:

Sin bình cộng cos bình thì phải bằng 1. Sin bình thì bằng tag bìn trên tag bình cộng 1. Cos bình bằng một trên một cộng tag bình. Một trên sin bình bằng 1 cộng cotg bình. Một trên cos bình bằng một cộng tag bình. Bắt được quả tang. Sin nằm trên cos. Cotg cãi lại. Cos nằm trên sin.

2. Công thức cộng trừ lượng giác

*

Cách ghi nhớ:

Sin thì sin cos cos sin Cos thì cos cos sin sin “coi chừng” (dấu trừ). Tang tổng thì lấy tổng tang Chia một trừ với tích tang, dễ òm.

3. Công thức nhân đôi

*

Cách ghi nhớ:

Sin gấp đôi thì bằng 2 lần sin cos Cos gấp đôi bằng bình cos trừ bình sin, bằng luôn hai cos bình trừ đi 1, cũng bằng một trừ hai sin bình mà thôi. Tang gấp đôi, ta lấy 2 tang chia đi một trừ bình tang ra liền.

4. Công thức nhân ba

*

Cách ghi nhớ:

Nhân 3 một góc bất kỳ. Sin thì ba bốn, Cos thì bốn ba. Dấu trừ đặt giữa hai ta, lập phường thì bốn chổ, thế là ra ngay.

5. Công thức hạ bậc

*

6. Công thức chia đôi

*

7. Công thức biến đổi tổng thành tích

*

Cách ghi nhớ:

sin tổng lập tổng sin cô cô tổng lập hiệu đôi cô đôi chàng còn tan tử cộng đôi tan (hoặc là: tan tổng lập tổng 2 tan) một trừ tan tích mẫu mang thương sầu gặp hiệu ta chớ lo âu, đổi trừ thành cộng ghi sâu vào lòng Một phiên bản khác của câu Tan mình cộng với tan ta, bằng sin 2 đứa trên cos ta cos mình… là tanx cộng tany: tình mình cộng lại tình ta, sinh ra 2 đứa con mình con ta tanx trù tan y: tình mình hiệu với tình ta sinh ra hiệu chúng, con ta con mình

8. Công thức biến đổi tích thành tổng

*

Cách ghi nhớ:

Cos cos nửa cos(+) cộng cos(-) Sin sin nửa cos(-) trừ cos (+) Sin cos nửa sin(+) cộng sin(-)

9. Công thức các cung liên kết trên đường tròn lượng giác

Góc đối nhau ( cos đối) cos(-x) = cosx sin(-x) = – sinx tan(-x) = – tanx cot(-x) = – cotx Góc bù nhau (sin bù) sin (π – x) = sinx cos (π – x) = – cosx tan (π – x) = – tanx cot (π – x) = – cotx Góc phụ nhau (Phụ chéo)

*

Góc hơn kém π sin (π + x) = -sinx cos (π + x) = -cosx tan (π + x) = tanx cot (π + x) = cotx

Cách ghi nhớ:

Cos đối, sin bù, phụ chéo, khác pi tag. Cosin của 2 góc đối thì bằng nhau. Sin của 2 góc bù nhau cũng bằng nhau. Phụ chéo là 2 góc phụ nhau thì sin góc này bằng cos góc kia. Tan góc này bằng Cot góc kia. Tan của 2 góc hơn kém pi cũng bằng nhau.

10. Hàm lượng giác ngược

*

11. Dạng số phức

*

12. Tích vô hạn

*

Các công thức lượng giác lớp 10 nâng cao

Ngoài các công thức lượng giác toán 10 cơ bản phía trên, chúng tôi sẽ giới thiệu thêm cho các bạn học sinh các công thức lượng giác lớp 10 nâng cao. Đây là những công thức lượng giác hoàn toàn không có trong sách giáo khoa nhưng rất thường xuyên gặp phải trong các bài toán rút gọn biểu thức, chứng minh biểu thức, giải phương trình lượng giác.

1. Công thức hạ bậc

*

2. Công thức liên quan đến tổng và hiệu các giá trị lượng giác

*

3. Các hệ thức lượng giác cơ bản trong tam giác

Cho tam giác ΔABC có các đỉnh lần lượt là A, B, C. Mối liên hệ giữa các góc ở đỉnh trong tam giác này với nhau:

*

*

4. Công thức liên quan đến tổng và hiệu các giá trị lượng giác

Mối liên hệ giữa sin và cos

*

Mối liên hệ giữa tan và cot

*

5. Các công thức lượng giác sử dụng biến đổi hằng đẳng thức

*

6. Công thức chia đôi góc

*

Nếu nhân cả tử và mẫu với 1+ cos α, chúng ta sẽ có:

*

Tương tự nếu nhân cả tử và mẫu với 1 – cos α , chúng ta sẽ có:

*

Do đó:

*

Nếu

*

Thì

*

Thần chú học công thức lượng giác đơn giản dễ nhớ

1. Công thức cộng trong lượng giác

Cos + cos = 2 cos cos cos trừ cos = trừ 2 sin sin Sin + sin = 2 sin cos sin trừ sin = 2 cos sin. Sin thì sin cos cos sin Cos thì cos cos sin sin “coi chừng” (dấu trừ). Tang tổng thì lấy tổng tang Chia một trừ với tích tang. Và tan một tổng 2 tầng cao rộng trên thượng tầng tan + tan tan dưới hạ tầng số 1 ngang tàng dám trừ một tích tan tan oai hùng

2. Công thức nhân đôi

Sin gấp đôi = 2 sin cos Cos gấp đôi = bình cos trừ bình sin = trừ 1 + 2 lần bình cos = + 1 trừ 2 lần bình sin Tang đôi ta lấy đôi tang (2 tang), chia 1 trừ lại bình tang, ra liền.

3. Các giá trị lượng giác của các cung đặc biệt

Thần chú học bảng giá trị lượng giác: Cos đối, sin bù, phụ chéo, tan hơn kém π

Chi tiết thần chú:

cos đối: cos( – x ) = cosx sin bù: sin( π – x ) = sina Phụ chéo là 2 góc phụ nhau thì sin góc này bằng cos góc kia, tan góc này băng cot góc kia. Hơn kém π tan: tan(x + π) = tanx và cot(x + π) = cotx

4. Công thức lượng tích thành tổng

Cos cos nửa cos cos Sin sin trừ nửa cos cos Sin cos nửa sin sin

5. Công thức lượng tổng thành tích

Sin trừ sin bằng 2 cos sin Cos cộng cos bằng 2 cos cos Cos trừ cos bằng – 2 sin sin Tan ta cộng với tan mình bằng sin hai đứa trên cos mình cos ta.

6. Hệ thức trong tam giác vuông

Sao Đi Học (Sin = Đối / Huyền) Cứ Khóc Hoài ( Cos = Kề / Huyền) Thôi Đừng Khóc ( Tan = Đối / Kề) Có Kẹo Đây ( Cotan = Kề/ Đối) Sin : đi học (cạnh đối – cạnh huyền) Cos: không hư (cạnh đối – cạnh huyền) Tang: đoàn kết (cạnh đối – cạnh kề) Cotang: kết đoàn (cạnh kề – cạnh đối) Tìm sin lấy đối chia huyền Cosin lấy cạnh kề, huyền chia nhau Còn tang ta hãy tính sau Đối trên, kề dưới chia nhau ra liền Cotang cũng dễ ăn tiền Kề trên, đối dưới chia liền là ra Công thức tính chu vi, diện tích hình bình hành Công thức tính diện tích hình thoi Công thức sin cos

Cách giải các dạng bài tập lượng giác lớp 10 cơ bản

I. Bài tập về các hệ thức lượng giác cơ bản.

Bài tập 1: Cho

*
. Xác định tính âm dương của các giá trị lượng giác:

*

Hướng dẫn:

Xác định điểm cuối của các cung ,… thuộc cung phần tư nào, từ đó xác định tính âm dương của các giá trị lượng giác tương ứng.

+ Cách xác định tính âm dương của các giá trị lượng giác

*

Lời giải:

*

Bài tập 2: Tính các giá trị lượng giác của góc α biết:

*

Hướng dẫn:

+ Nếu biết trước sinα thì dùng công thức: sin2α + cos2α = 1 để tìm ,

Lưu ý: Xác định dấu của các giá trị lượng giác để nhận, loại.

*

+ Nếu biết trước cosα thì tương tự như trên.

+ Nếu biết trước tanα thì dùng công thức:

*
để tìm cosα ,

Lưu ý: xác định tính âm dương của các giá trị lượng giác để nhận, loại. sinα = tanα.cosα ,

*

Giải:

*

Các bài tập còn lại làm tương tự.

Bài tập 3: Cho

*
. Tính:

*

Hướng dẫn: Để tính các biểu thức này ta phải biến đổi chúng về một biểu thức theo tana rồi thay giá trị của tan a vào biểu thức đã biến đổi.

Xem thêm: Suy Nghĩ Của Em Về Vấn Đề Tai Nạn Giao Thông Hiện Nay, Suy Nghĩ Về Vấn Đề Tai Nạn Giao Thông Hiện Nay

*

Bài 4:

a) Tính

*
biết tanα = -3

b) Tính

*
biết cotα = 2

Hướng dẫn:

a) Chia cả tử và mẫu cho cosα

b) Chia cả tử và mẫu cho sinα

*

II. Bài tập rút gọn và tính giá trị của biểu thức lượng giác

Bài tập 1: Đơn giản các biểu thức:

*

*

*

Hướng dẫn:

*

III. Bài tập về các công thức lượng giác

Bài tập 1: Tính các giá trị lượng giác của các cung có số đo:

*

Hướng dẫn: Phân tích thành tổng hoặc hiệu của hai cung đặc biệt

Phân tích 15o = 60o – 45o hoặc 45o – 30o rồi sử dụng các công thức cộng

Phân tích

*
rồi sử dụng các công thức cộng

*

Bài tập 2: Tính cos2α, sin2α, tan2α biết:

*

Hướng dẫn:

a) tính sina, sau đó áp dụng các công thức nhân đôi.

*

Bài tập 3: Chứng minh các biểu thức sau là những hằng số không phụ thuộc vào a

a) A = 2(sin6α + cos66α) – 3(sin4α + cos4α)

Hướng dẫn: Sử dụng a3 + b3; A = -1

b) B = 4(sin4α + cos4α) – cos4α

Hướng dẫn: Sử dụng a2 + b2 = (a + b)2 – 2ab và cos2α = 1 – 2sin2a; B = 3

*

Hướng dẫn: Sử dụng

*

Hy vọng với những thông tin về công thức lượng giác lớp 9, 10, 11 mà chúng tôi vừa phân tích chi tiết phía trên có thể giúp bạn nhớ được các công thức để vận dụng giải các bài toán liên quan đến lượng giác đơn giản. Chúc các bạn thành công