Nguyên hàm là gì? tính chất của nguyên hàm? Bảng cách làm nguyên hàm rất đầy đủ và không ngừng mở rộng lớp 12 của hàm số cơ bản? bí quyết học bí quyết nguyên hàm từng phần và nâng cao? thế nào là nguyên hàm căn u?… trong nội dung nội dung bài viết dưới đây, nofxfans.com sẽ giúp bạn tổng hợp kiến thức về chủ đề nguyên hàm tương tự như bảng phương pháp nguyên hàm, cùng tò mò nhé!


Nguyên hàm là gì?

Hàm số (F_(x)) được gọi là nguyên hàm của hàm số (f_(x)) bên trên (a;b) nếu (F’_(x) = f_(x))


Ví dụ:

Hàm số (y = x^2) là nguyên hàm của hàm số (y = 2x) trên (mathbbR) bởi vì ((x^2)’ = 2x)Hàm số (y = ln x) là nguyên hàm của hàm số (y = frac1x) trên ((0,+infty )) bởi vì ((ln x)’ = frac1x)

*

Tính chất của nguyên hàm

((int f_(x)dx)’ = f_x)(int a.f_(x)dx = a.int f_(x)dx)(int left < f_(x) pm g_(x) ight >dx = int f_(x)dx pm int g_(x)dx)

Bảng cách làm nguyên hàm đầy đủ và mở rộng

Nguyên hàm của các hàm số sơ cấp

Nguyên hàm của những hàm số phù hợp

u = u(x)

Lũy thừa(int dx = x + C)(int du = u + C)
(int x^a dx = fracx^a + 1a + 1 + C)(int u^a dx = fracu^a + 1a + 1 + C)
Mũ logarit(int fracdxx = ln left ,,left( x e 0 ight))(int + C ,,left( x e 0 ight))
(int e^xdx = e^x + C)(int e^udx = e^u + C)
(int {a^xdx = fraca^xln a + C,,left( {0 (int {a^udu = fraca^uln a + C,,left( {0
Lượng giác(int cos xdx = sin x + C)(int cos udu = sin u + C)
(int sin xdx = – cos x + C)(int sin udu = – cos u + C)
(int fracdxsin x = ln left| an fracx2 ight| + C)(int fracdusin u = ln left| an fracu2 ight| + C)
(int fracdxcos x = ln left| an left( fracx2 + fracpi 4 ight) ight| + C)(int fracducos u = ln left| an left( fracu2 + fracpi 4 ight) ight| + C)
(int fracdxcos ^2x = an x + C)(int fracducos ^2u = an u + C)
(int fracdxsin ^2x = – cot x + C)(int fracdusin ^2u = – cot u + C)
(int cot xdx = ln left | sinx ight | + C)(int cot udu = ln left | sinu ight | + C)
(int an xdx = -ln left | cos x ight | + C)(int an udu = -ln left | cos u ight | + C)
Căn thức(int fracdxsqrtx = 2sqrtx + C)(int fracdusqrtu = 2sqrtu + C)
(int sqrtxdx = fracnn+1sqrtx^n+1 + C)(int sqrtudu = fracnn+1sqrtu^n+1 + C)
(int fracdxsqrtx^2pm a = ln left | x + sqrtx^2pm a ight | + C)(int fracdusqrtu^2pm a = ln left | u + sqrtu^2pm a ight | + C)
(int fracdxsqrta^2 – x^2 = arcsin fracxa + C)(int fracdusqrta^2 – u^2 = arcsin fracua + C)
(int fracxdxsqrt x^2 pm a^2 = sqrt x^2 pm a^2 + C)(int fracudusqrt u^2 pm a^2 = sqrt u^2 pm a^2 + C)
(int sqrt x^2 pm a^2 dx = fracx2sqrt x^2 + a^2 pm fraca2ln left| x + sqrt x^2 pm a^2 ight| + C)(int sqrt u^2 pm a^2 du = fracu2sqrt u^2 + a^2 pm fraca2ln left| u + sqrt u^2 pm a^2 ight| + C)
Phân thức hữu tỷ(int fracdxx^2 = -frac1x + C)(int fracduu^2 = -frac1u + C)
(int fracdxx^n = frac-1(n – 1)x^n – 1 + C)(int fracduu^n = frac-1(n – 1)u^n – 1 + C)
(int fracdxx^2 – a^2 = frac12aln left | fracx – ax + a ight | + C)(int fracduu^2 – a^2 = frac12aln left | fracu – au + a ight | + C)
(int fracdxx^2 + a^2 = frac1aarctan fracxa + C)(int fracduu^2 + a^2 = frac1aarctan fracua + C)
(int fracxdxx^2 pm a^2 = frac12ln left| x^2 pm a^2 ight| + C)(int fracuduu^2 pm a^2 = frac12ln left| u^2 pm a^2 ight| + C)

Trên đây là bài viết tổng hợp kỹ năng và kiến thức về nguyên hàm cùng bảng công thức nguyên hàm không thiếu thốn và mở rộng lớp 12. Nếu có băn khoăn hay thắc mắc cũng như góp ý cho nội dung bài viết về chủ thể bảng bí quyết nguyên hàm khá đầy đủ và mở rộng, chúng ta để lại ý kiến tại phần bình luận dưới nha. Nếu như thấy giỏi thì share nhé Rate this post