Bạn đang xem: Leonhard euler tiếng anh là gì
Question: Did Euler (or Johann Bernoulli) ever write $f(x)$?
In case the answer is no, the follow up question is: when did it become standard lớn put parentheses around $x$?
mathematics mathematicians notation euler
cốt truyện
Improve this question
Follow
edited Oct 7, 2021 at 13:05

Rodrigo de Azevedo
1,04799 silver badges1515 bronze badges
asked Jan 8, 2018 at 10:32

Michael BächtoldMichael Bächtold
1,5251111 silver badges1919 bronze badges
$endgroup$
6
| Show 1 more comment
2 Answers 2
Sorted by: Reset to default
Highest score (default) Date modified (newest first) Date created (oldest first)
6
$egingroup$
I’m guessing no. But how does one make sure? (Maybe with 85+ volumes of clean pdfs...)
Cajori, who started that $f(frac xa+c)$ example, points out a $varphi(z)$ in D’Alembert (1754, p 50).
For “standard”, I would say Lacroix (1797, p. 87):
4. Pour représenter une fonction sans indiquer, en aucune manière bình luận elle peut être composée, je me servirai de la caractéristique $mathrm f$; et il faudra entendre, par l"expression $mathrm f(x)$, une fonction quelconque de $x$, en comprenant sous cette dénomination tout ce que comporte la définition du mot fonction (Intr. nº 1) : on doit donc bien se garder de prendre la lettre $mathrm f$ pour un coefficient de $x$. J’indiquerai la substitution de $x+k$ aulieu de $x$ dans $mathrm f(x)$, en écrivant $mathrm f(x+k)$, et cela voudra dire que le résultat est composé en $x+k$, comme la fonction primitive l’est en $x$.
Side remark tying into your other question: This book of Lacroix writes “the function $f$” very often; e.g. Pp. 93, 212, 258, 483–496, 502, mainly when describing results of Monge who also did this a lot (but avoided unnecessary parentheses). I think “$f$” all started with solutions of PDEs depending on “arbitrary functions” — though only Dedekind, I would say, made them “objects” in the sense you want at the other question.
Xem thêm: Điểm Danh 7 Công Dụng Của Thơm Trên Cả Tuyệt Vời Với Sức Khỏe
Edit:In E213 “Remarques sur les mémoires précedens de M. Bernoulli” (1755), just quoted elsewhere, you can see Euler “forget” his evaluation colon and slip into writing $Phi"(x)$ (p. 215) and eventually $Phi(x)$ (p. 216). Same thing in E441 (1773, p 429). So in the end, yes.