1. Bảng bí quyết nguyên hàm
a) cách làm cơ bản
Phần cơ bản này tất cả 12 công thức nguyên hàm được thu xếp thành bảng dưới đây:

b) Nguyên hàm mũ
Với nguyên hàm của hàm nón được chia thành 8 cách làm thuộc 2 công ty đề:
Hàm nón eHàm mũ
c) Nguyên các chất giác
Bảng cách làm nguyên hàm lượng giác này còn có 12 công thức liên tục gặp:

d) bí quyết nguyên hàm căn thức
Nguyên hàm của căn thức trước tiếng vẫn xem là khó bắt buộc nofxfans.com sẽ tuyển chọn những cách làm thường gặp, kế tiếp sắp xếp từ căn bạn dạng tới nâng cao

2. Bài bác tập nguyên hàm
a) bài tập bao gồm lời giải
Câu 1. Hãy search nguyên hàm $int frac – x^3 + 5x + 24 – x^2dx $
A.$fracx^22 – ln left| 2 – x
ight| + C$.
Bạn đang xem: Nguyên hàm căn u
B. $fracx^22 + ln left| 2 – x ight| + C$.
C. $fracx^33 – ln left| 2 – x ight| + C$.
D. $fracx^33 + ln left| x – 2 ight| + C$.
Lời giải
Chọn A
Vì $frac – x^3 + 5x + 24 – x^2$$ = fracx^3 – 5x – 2x^2 – 4$$ = fracleft( x + 2 ight)left( x^2 – 2x – 1 ight)left( x + 2 ight)left( x – 2 ight)$$ = x – frac1x – 2$
$ = int left( x – frac1x – 2 ight) extdx = fracx^22 – ln left| x – 2 ight| + C$. $ Rightarrow int frac – x^3 + 5x + 24 – x^2 extdx $$ = int left( x – frac1x – 2 ight) extdx $$ = fracx^22 – ln left| x – 2 ight| + C$
Câu 2. Tra cứu hàm số $f(x)$ hiểu được $f"(x) = ax + fracbx^2$ vừa lòng $f’left( 1 ight) = 0; ext fleft( 1 ight) = 4; ext fleft( – 1 ight) = 2$
A. $fleft( x ight) = fracx^22 – frac1x – frac52$.
B. $fleft( x ight) = fracx^22 + frac1x + frac52$.
C. $fleft( x ight) = fracx^22 – frac1x + frac52$.
D. $fleft( x ight) = fracx^22 + frac1x – frac52$.
Lời giải
Chọn B
Vì $f’left( 1 ight) = 0 Rightarrow a + b = 0 ext left( 1 ight)$
Ta lại có $fleft( x ight) = int f’left( x ight) extdx $$ = int left( ax + fracbx^2 ight) extdx $$ = fracax^22 – fracbx + C$
Vì $fleft( 1 ight) = 4$$ Leftrightarrow fraca2 – b + C = 4$$ Leftrightarrow a – 2b + 2C = 8 ext left( 2 ight)$
và $fleft( – 1 ight) = 2 Leftrightarrow fraca2 + b + C = 2 Leftrightarrow a + 2b + 2C = 4 ext left( 3 ight)$
Giải hệ phương trình $left{ eginarrayl a + b = 0\ a – 2b + 2C = 8\ a + 2b + 2C = 4 endarray ight. Leftrightarrow left{ eginarrayl a = 1\ b = – 1\ c = frac52 endarray ight.$
Vậy $fleft( x ight) = fracx^22 + frac1x + frac52$
Câu 3. Giá trị $m,n$ để hàm số $Fleft( x ight) = left( 2m + n ight)x^3 + left( 3m – 2n ight)x^2 – 4x$ là một trong những nguyên hàm của hàm số $fleft( x ight) = 3x^2 + 10x – 4$. Khi đó $8m – 2n$ là:
A. $6$.
B. $12$.
C. $10$.
D. $ – 2$.
Lời giải
Chọn C
$int left( 3x^2 + 10x – 4 ight)dx = x^3 + 5x^2 – 4x + C $
Khi đó ta có $left{ eginarrayl 2m + n = 1\ 3m – 2n = 5\ C = 0 endarray ight. Leftrightarrow left{ eginarrayl m = 1\ n = – 1\ C = 0 endarray ight.$ cần $8m – 2n = 10$.
Câu 4. Search nguyên hàm của hàm số $f(x) = frac2sin ^3x1 + cos x$.
A. $int f(x)dx = frac12cos ^2x – 2cos x + C $.
B. $int f(x)dx = cos ^2x – 2cos x + C $.
C. $int f(x)dx = cos ^2x + cos x + C$.
D. $int f(x)dx = frac12cos ^2x + 2cos x + C $.
Lời giải
Chọn B
$int left( frac2sin ^3x1 + cos x ight)dx $ $ = int left( frac2sin x.sin ^2x1 + cos x ight)dx $ $ = int left( frac2sin xleft( 1 – cos ^2x ight)1 + cos x ight) dx$ $ = 2int sin xleft( 1 – cos x ight)dx $ $ = int 2left( cos x – 1 ight)dleft( cos x ight) $$ = cos ^2x – 2cos x + C$
Câu 5. Tìm kiếm nguyên hàm của hàm số $f(x) = fraccos ^3xsin ^5x$.
A. $int f(x).dx = frac – cot ^4x4 + C$.
B. $int f(x).dx = fraccot ^4x4 + C$.
C. $int f(x).dx = fraccot ^2x2 + C$.
D. $int f(x).dx = frac an ^4x4 + C$.
Lời giải
Chọn A
$int fraccos ^3xdxsin ^5x $ $ = int cot ^3x.fracdxsin ^2x $ $ = – int cot ^3x.dleft( cot x ight) $ $ = frac – cot ^4x4 + C$
Câu 6. tìm kiếm nguyên hàm của hàm số: $f(x) = cos 2xleft( sin ^4x + cos ^4x ight)$.
A. $int f(x).dx = sin 2x – frac14sin ^32x + C$
B. $int f(x).dx = frac12sin 2x + frac112sin ^32x + C$.
C. $int f(x).dx = frac12sin 2x – frac112sin ^32x + C$.
D. $int f(x).dx = frac12sin 2x – frac14sin ^32x + C$.
Lời giải
Chọn C
$int cos 2xleft( sin ^4x + cos ^4x ight)dx $ $ = int cos 2xleft< left( sin ^2x + cos ^2x ight) – 2sin ^2x.cos ^2x ight>dx $
$ = int cos 2xleft( 1 – frac12sin ^22x ight)dx $ $ = int cos 2xdx – frac12int sin ^22x.cos 2xdx $ $ = int cos 2xdx – frac14int sin ^22x.dleft( sin 2x ight) $ $ = frac12sin 2x – frac112sin ^32x + C$
Câu 7. Tìm kiếm nguyên hàm của hàm số $f(x) = left( an x + e^2sin x ight)cos x$.
A. $int f(x)dx = – cos x + frac12e^2sin x + C$.
B. $int f(x)dx = cos x + frac12e^2sin x + C$.
C. $int f(x)dx = – cos x + e^2sin x + C$.
D. $int f(x)dx = – cos x – frac12e^2sin x + C$.
Lời giải
Chọn A
$int left( an x + e^2sin x ight)cos xdx $ $ = int sin xdx + int e^2sin xdleft( sin x ight) $ $ = – cos x + frac12e^2sin x + C$
b) bài tập trắc nghiệm nguyên hàm từ luyện
Câu 1. Nguyên hàm của hàm số $fleft( x ight) = 2x^3 – 9.$
A. $frac12x^4 – 9x + C.$
B. $4x^4 – 9x + C.$
C. $frac14x^4 + C.$
D. $4x^3 + 9x + C.$
Câu 2. Nguyên hàm của hàm số $fleft( x
ight) = x^2 – frac5x + frac3x^2 – frac13$.
Xem thêm: Lễ Thất Tịch 2021 - Thất Tịch Là Ngày Gì
A. $fracx^33 – 5ln left| x ight| – frac3x – frac13x + C$
B. $fracx^33 – 5ln left| x ight| + frac3x – frac13x + C$
C. $2x^3 – 5ln left| x ight| – frac3x – frac13x + C$
D. $2x – frac5x^2 + frac3xx^4 + C$
Câu 3. Nguyên hàm của hàm số $fleft( x ight) = frac1x^2 – x^2 – frac13$ là:
A. $ – fracx^4 + x^2 + 33x + C$
B. $ – fracx^33 + frac1x – fracx3 + C$
C. $frac – x^4 + x^2 + 33x + C$
D. $ – frac1x – fracx^33 + C$
Câu 4. Nguyên hàm của hàm số $fleft( x ight) = sqrt<3>x$
A. $Fleft( x ight) = frac3sqrt<3>x^24 + C$
B. $Fleft( x ight) = frac3xsqrt<3>x4 + C$
C. $Fleft( x ight) = frac4x3sqrt<3>x + C$
D. $Fleft( x ight) = frac4x3sqrt<3>x^2 + C$
Câu 5. Nguyên hàm của hàm số $fleft( x ight) = frac1xsqrt x $
A. $Fleft( x ight) = frac2sqrt x + C$
B. $Fleft( x ight) = – frac2sqrt x + C$
C. $Fleft( x ight) = fracsqrt x 2 + C$
D. $Fleft( x ight) = – fracsqrt x 2 + C$
Trên đó là các công thức nguyên hàm lớp 11 được soạn từ cơ bạn dạng tới nâng cao. Hy vọng làm giỏi bài tập tốt rút gọn biểu thức thì bài toán học trực thuộc lòng những công thức trong bảng trên là đề xuất thiết. Khi nhớ đúng chuẩn mỗi công thức, áp dụng nó một bí quyết thuần thục thì giải bài tập trở lên trên nhanh, cho tác dụng chính xác. Nguyên hàm là kiến thức bắt đầu học sống lớp 12, còn mới lạ, nhiều công thức, bài tập phức tạp. Nói là vậy nhưng nếu khách hàng chăm học, xem kĩ nội dung bài viết này và tiếp tục xem lại các công thức thì nó đã trở lên 1-1 giản.