Hôm nay, Kiến Guru sẽ cùng bạn tìm hiểu về 1 chuyên đề toán lớp 12: Tìm Max và Min của hàm số. Đây là một chuyên đề vô cùng quan trọng trong môn toán lớp 12 và cũng là kiến thức ăn điểm không thể thiếu trong bài thi toán THPT Quốc Gia. Bài viết sẽ tổng hợp 2 dạng thường gặp nhất khi bước vào kì thi. Các bài tập liên quan đến 2 dạng trên hầu như các bài thi thử và các đề thi càng năm gần đây đều xuất hiện. Cùng nhau khám phá bài viết nhé:

*

I. Chuyên đề toán lớp 12 – Dạng 1: Tìm giá trị lớn nhất; giá trị nhỏ nhất của hàm số.

Bạn đang xem: Tìm max

1. Phương pháp giải áp dụng toán giải tích lớp 12

* Bước 1: Tìm các điểm x1; x2; x3; ..; xntrên , tại đó f"(x) = 0 hoặc f"(x) không xác định.

* Bước 2: Tính f(a); f(x1); f(x2); f(x3); ...; f(xn); f(b).

* Bước 3: Tìm số lớn nhất M và số nhỏ nhất m trong các số trên thì .

{M}=f(x) m=f(x)

2. Ví dụ minh họa giải chuyên đề toán đại lớp 12: tìm giá trị max, min của hàm số.

Ví dụ 1:Giá trị lớn nhất của hàm số f(x) = x3– 8x2+ 16x - 9 trên đoạn <1; 3> là:

Nhận xét: Hàm số f(x) liên tục trên <1;3>

Ta có đạo hàm y"= 3x2– 16x + 16

*

Do đó :

*

Suy ra ta chọn đáp án B.

Ví dụ 2:Giá trị lớn nhất của hàm số f(x) = x4– 2x2+ 1 trên đoạn <0; 2> là:

*

Nhận xét: Hàm số f(x) liên tục trên <0;2>

Ta có y" = 4x3- 4x = 4x(x2- 1).

Xét trên (0;2) ta có f"(x) = 0 khi x = 1.

Khi đó f(1) = 0; f(0) = 1; f(2)= 9

Do đó

*

Suy ra chọn đáp án D.

Ví dụ 3:Giá trị nhỏ nhất của hàm số y = x(x + 2).(x + 4).(x + 6) + 5 trên nữa khoảng <-4; +∞) là:

*

Nhận xét: Hàm số f(x) liên tục trên

* Ta có: y = (x2+ 6x).(x2+ 6x + 8) + 5.

Đặt t = x2+ 6x. Khi đó y = t.(t + 8) + 5 = t2+ 8t + 5

* Xét hàm số g(x)= x2 + 6x với x ≥ -4.

Ta có g"(x) = 2x + 6; g"(x) = 0 khi và chỉ khi x = -3

*

Bảng biến thiên:

*

Suy ra t ∈ <-9; +∞)

* Yêu cầu bài toán trở thành tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

y = h(t)= t2+ 8t + 5 với t ∈ <-9; +∞).

* Ta có h"(t) = 2t + 8

h"(t) = 0 khi t = - 4;

*

Bảng biến thiên

*

Vậy

*

Suy ra chọn đáp án B.

*

II. Chuyên đề toán lớp 12 - Dạng 2: Tìm m để hàm số có giá trị lớn nhất; giá trị nhỏ nhất thỏa mãn điều kiện.

1. Phương pháp giải áp dụng tính chất toán học 12.

Cho hàm số y = f(x;m) liên tục trên đoạn . Tìm m để giá trị max; min của hàm số thỏa mãn điều kiện T:

Bước 1. Tính y’(x).

+ Nếu y"(x) ≥ 0; ∀x trên đoạn thì hàm số sẽ đồng biến trên

⇒ Hàm số đạt min tại x = a; hàm số max nhất tại x = b

+ Nếu y"(x) ≤ 0; ∀x trên đoạn thì hàm số sẽ nghịch biến trên

⇒ Hàm số min tại x = b và đạt max tại x = a.

+ Nếu hàm số không đơn điệu trên đoạn ta sẽ làm như sau:

Giải phương trình y" = 0.

Lập bảng biến thiên. Từ đó suy ra min và max của hàm số trên .

Bước 2. Kết hợp với giả thuyết ta suy ra giá trị m cần tìm.

2. Ví dụ minh họa

Ví dụ 1:Tìm m để max của hàm số sau trên đoạn <0;1> bằng -4

A. m = 1 hoặc m = -1 B. m = 2 hoặc m = -2

B. m = 3 hoặc m = -3 D. m = 4 hoặc m = -4

Đạo hàm

*

Suy ra hàm số f(x) đồng biến trên <0;1>

Nên

*

Theo giả thiết ta có:

*

⇔ m2= 9 nên m = 3 hoặc m = -3

Suy ra chọn đáp án C.

Ví dụ 2:Tìm giá trị thực của tham số a để hàm số f(x) = -x3– 3x2+ a có giá trị nhỏ nhất trên đoạn <-1; 1> là 0

A. a = 2 B. a = 6

C. a = 0 D. a = 4

Đạo hàm f"(x) = -3x2- 6x

Xét phương trình:

Suy ra chọn đáp án D.

Ví dụ 3:Cho hàm số:

*

(với m là tham số thực) thỏa mãny =3

Mệnh đề nào dưới đây là đúng?

A. 3

C. m > 4 D. m

Đạo hàm

* Trường hợp 1.

Với m > -1 suy ra

nên hàm số f(x) nghịch biến trên mỗi khoảng xác định.

Khi đó

*

* Trường hợp 2.

Với m

nên hàm số f(x) đồng biến trên mỗi khoảng xác định.

Khi đó

*

Vậy m = 5 là giá trị cần tìm và thỏa mãn điều kiện m > 4.

Suy ra chọn đáp án C.

Xem thêm: Kno3 Nhiệt Phân - Nhiệt Phân Muối Kno3 + Than Nóng Đỏ

*

Trên đây là 2 dạng giải bài tập trong chuyên đề toán lớp 12: tìm max, min của hàm số mà Kiến Guru muốn chia sẻ đến các bạn. Ngoài làm các bài tập trong chuyên đề này, các bạn nên trau dồi thêm kiến thức, bên cạnh đó là làm thêm các bài tập để nhuần nhuyễn 2 dạng bài tập này. Vì đây là 2 phần câu hỏi được đánh giá là dễ ăn điểm nhất trong đề thi toán lớp 12, hãy làm cho mình một cách làm thật nhanh để giải quyết nhanh gọn nhất bên cạnh đó cũng phải tuyệt đối chính xác để không mất điểm nào trong câu này. Chúc các bạn học tập tốt.